精品人妻区二区三区蜜桃-欧美妇女高潮高清喷水-欧美三级精品一区在线-视频成人在线免费观看

歡迎訪問中國科學(xué)院重慶綠色智能技術(shù)研究院!

科研進(jìn)展

重慶研究院在云服務(wù)質(zhì)量發(fā)展趨勢預(yù)測研究中取得進(jìn)展

時(shí)間:2016-11-28編輯:信息所大數(shù)據(jù)挖掘及應(yīng)用中心

  近日,重慶研究院大數(shù)據(jù)挖掘及應(yīng)用中心團(tuán)隊(duì)與英國布魯奈爾大學(xué)王子棟教授團(tuán)隊(duì)、美國新澤西理工大學(xué)周孟初教授團(tuán)隊(duì)聯(lián)合攻關(guān),在云服務(wù)質(zhì)量發(fā)展趨勢預(yù)測研究中取得進(jìn)展,率先提出“基于稀疏矩陣非負(fù)隱特征分析的云服務(wù)質(zhì)量預(yù)測框架”[1, 2],結(jié)合稀疏矩陣非負(fù)隱特征分析、集成學(xué)習(xí)和高性能云計(jì)算,對云服務(wù)質(zhì)量和變化趨勢進(jìn)行準(zhǔn)確預(yù)測。相關(guān)研究成果發(fā)表于《IEEE Transactions on Services Computing*和《IEEE Transactions on Neural Networks and Learning Systems**[1, 2]。 

  云服務(wù)是面向服務(wù)架構(gòu)(Service-oriented ArchitectureSOA)的大型應(yīng)用系統(tǒng)的基本組成單元,其性能直接決定SOA應(yīng)用系統(tǒng)的性能。用戶感知服務(wù)質(zhì)量是衡量云服務(wù)性能的重要標(biāo)準(zhǔn)。在工業(yè)應(yīng)用系統(tǒng)中,隨著云服務(wù)數(shù)量的增長和分布式接口的膨脹,系統(tǒng)無法對全部的云服務(wù)進(jìn)行調(diào)用,而只會調(diào)用其中的一個(gè)子集,從而導(dǎo)致已知的云服務(wù)質(zhì)量數(shù)據(jù)是稀疏、不完整的[3]。然而,系統(tǒng)又迫切需要以云服務(wù)質(zhì)量數(shù)據(jù)為依據(jù),以實(shí)現(xiàn)服務(wù)優(yōu)選,進(jìn)一步提高系統(tǒng)性能。因此,如何根據(jù)稀疏的云服務(wù)質(zhì)量歷史數(shù)據(jù),預(yù)測和判斷云服務(wù)的用戶感知服務(wù)質(zhì)量發(fā)展趨勢,是服務(wù)計(jì)算領(lǐng)域的重要問題[1, 2]。 

  針對該問題,重慶研究院大數(shù)據(jù)挖掘及應(yīng)用中心羅辛研究員及其研究團(tuán)隊(duì)結(jié)合稀疏大數(shù)據(jù)分析領(lǐng)域的隱特征分析方法[3-6],從不同角度建模解決方案:1)為用戶感知服務(wù)質(zhì)量數(shù)據(jù)是非負(fù)數(shù)據(jù),進(jìn)行隱特征建模時(shí)通過非負(fù)約束[1-4],增強(qiáng)所得模型對目標(biāo)數(shù)據(jù)的表征能力;2)模型訓(xùn)練的時(shí)間損耗是工業(yè)應(yīng)用領(lǐng)域的重點(diǎn)關(guān)注問題,需要結(jié)合高效的訓(xùn)練優(yōu)化方法,如交替方向強(qiáng)化訓(xùn)練[1, 3],提高模型訓(xùn)練的收斂速度,降低時(shí)間損耗;3)對服務(wù)質(zhì)量發(fā)展趨勢進(jìn)行預(yù)測的準(zhǔn)確度直接決定預(yù)測框架的有效性,需要借鑒集成學(xué)習(xí)的思想,構(gòu)造多個(gè)隱特征模型,并通過隱特征篩選和隨機(jī)注入對其進(jìn)行分化,再聚合,以得到準(zhǔn)確的預(yù)測結(jié)果[1, 2]4)為進(jìn)一步降低構(gòu)造模型聚合的時(shí)間消耗,需要結(jié)合高性能云計(jì)算技術(shù),通過分布式的云計(jì)算將多個(gè)基本模型的訓(xùn)練并行化[1]。實(shí)驗(yàn)結(jié)果表明,對比現(xiàn)有云服務(wù)質(zhì)量預(yù)測模型,應(yīng)用該框架構(gòu)造的預(yù)測模型在預(yù)測準(zhǔn)確度和計(jì)算效率上具備明顯優(yōu)勢[1, 2]。 

  [1] Xin Luo, Mengchu Zhou, Zidong Wang, Yunni Xia, and Qingsheng Zhu. An Effective QoS Estimating Scheme via Alternating Direction Method-based Matrix Factorization, IEEE Transactions on Services Computing, DOI 10.1109/TSC.2016.2597829 (In Press). 

  [2] Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. Generating Highly Accurate Predictions for Missing QoS-data via Aggregating Non-negative Latent Factor Models[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(3):579-592. 

  [3] Xin Luo, Mengchu Zhou, Shuai Li, Zhuhong You, Yunni Xia, and Qingsheng Zhu. A Non-negative Latent Factor Model for Large-scale Sparse Matrices in Recommender Systems via Alternating Direction Method[J]. IEEE Trasactions on Neural Networks and Learning Systems, 2016, 27(3):524-537. 

  [4] Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. An Efficient Non-negative Matrix-factorization-based Approach to Collaborative-filtering for Recommender Systems[J]. IEEE Trasactions on Industrial Informatics, 2014, 10(2): 1273-1284. 

  [5] Xin Luo, Yunni Xia and Qingsheng Zhu. Incremental Collaborative Filtering Recommender Based on Regularized Matrix Factorization[J]. Knowledge-Based Systems, 2012, 27: 271-280. 

  [6] Xin Luo, Yunni Xia and Qingsheng Zhu. Applying the Learning Rate Adaptation to the Matrix Factorization Based Collaborative Filtering[J]. Knowledge-Based Systems, 2013, 37: 154-164. 

    

  論文鏈接: 

  1 https://www.computer.org/csdl/trans/sc/preprint/07555347-abs.html 

  2 http://ieeexplore.ieee.org/document/7091940/ 

  3 http://ieeexplore.ieee.org/document/7112169/ 

  4http://ieeexplore.ieee.org/document/6748996/ 

  5http://www.sciencedirect.com/science/article/pii/S0950705111002073 

  6http://www.sciencedirect.com/science/article/pii/S0950705112002043